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Abstract: Data structures with spatial and temporal dependencies are not uncom-
mon in environmental and agronomic fields. We consider the modeling and estima-
tion problem for these type of structures, in particular we consider proportional odds
models with spatio-temporal covariables with estimation via maximum pseudlikeli-
hood. We end by presenting a testing problem on treatment effects on data from a
field experiment on agave tequilana.
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1 Introduction

Treatment comparison is a common objective in many agronomic field experiments.
An interesting situation for these comparisons is when we have to account for lon-
gitudinal and spatial dependencies. In this work we consider this setting when the
response variable is an ordinal observation on the damage level on Agave plants
due to a root infection disease. Our main objectives are to present a modeling and
inference approach for data from a field experiment on agave plants.

Regression models with ordinal responses have been extensively studied. McCullagh
(1980) presents a discussion on regression with ordinal data for the case of indepen-
dent observations; extensions to some of the ideas presented in that paper have been
treated in, for example, Anderson (1984) and Peterson and Harrel (1990) where the
partial proportional odds models are discussed. Holtbrugge and Schumacher (1991)
propose the stereotype model in the analysis of a clinical trial study. Many more
alternative models, in this direction, have been worked out and the list is endless.
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The inclusion of spatial dependencies has been pioneered by J. E. Besag (see the 1972,
1974 and 1975 references), who has also considered spatio-temporal dependencies for
the binary case. The basic modeling proposal considers the construction of models
based on conditionally specified distributions; the classical approach to solve the
estimation problem for this kind of conditional probability models has been through
the composite likelihood based on estimating function theory, as given by Godambe
(1960), Godambe and Heyde (1987), Lindsay (1988), Godambe and Kale (1991) and
Arnold and Strauss (1991) among others.

Many different algorithms and methodologies have been worked out for spatial mod-
els with categorial and ordinal responses, see for example Gumpertz et al (1997),
Heagerty and Lele (1998) and Bartolucci and Besag (2002). In particular, Markov
random field (MRF) model theory has shown to be very useful when approaching
these type of models. Kutsyy (2001) proposes a model assuming a latent Gaus-
sian process with a local dependency structure via a MRF, and then building an
ordinal spatial process as an indicator of slices of the latent process. Wu and Huffer
(1997) consider Monte Carlo Markov Chain (MCMC) methods in a Bayesian setting.
Among other Bayesian approaches we can mention Besag (1974,1986), Knorr-Held
and Besag (1998) and Heikkinen and Högmander (1994).

Similar models that include not only spatial dependencies but also time, use similar
arguments, in particular Gumpertz et al (2000), show an application of a logistic
regression model with spatial and temporal autocorrelations. In a series of papers,
Cressie and Davidson (1998), Davidson et al (1999) and Huang and Cressie (2000),
define the concept of partially ordered Markov models (POMMs), and obtain the
asymptotic properties of maximum composite likelihood estimation, using the partial
order when spatial dependencies are present. POMMs were also used in Peraza-
Garay (2004), where a particular model is presented, to handle both, spatial an
temporal dependencies in a study of ordinal data. Defining only Markovian time
structure through transition probabilities and conditioning on the past values for the
spatial dependencies, the full likelihood approach can be established and a modified
version of the partial order (POMM’s), allows for conditions on the existence and
uniqueness of the MLE, as well as its asymptotic normality.

1.1 Case study

In this paper we discuss a model that considers spatio-temporal dependencies in
the following way. The agave (agave tequilana Weber or simply Blue Agave) is a
plant which grows in certain regions of México to produce tequila liquor. By 1998,
more than twenty percent of the total plantation started to show symptoms of a
sickness that causes the plant to whiter, leaving it unusable for production. The
agave plants take 5 to 8 years to reach maturity; consequently the loss of plants
represented a critical problem. After the identification of the microorganisms that
cause the premature whiter of the Blue Agave plant, which was a difficult task due
to the longevity of the plant, a Somatic Embryogenesis method was used to identify
a toxin known as Erwinia and a fungus denominated Fusarium as the main agents
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of this disease. Other genetic studies were also performed, finding the existence of
small variation, making the plant very susceptible to diseases like the one that was
affecting the plants. As part of the many efforts made, we present here a data set
resulting from a study implemented in a research station of a tequila company.

The objective of the study was to understand the spread of the fungus that produces
the premature fading of the agave leaves and to test a pair of pesticides in its effect
to control the illness. This type of fungus enters the plant through the root, and then
the contagious would be logically expected in the rows of the cultivated area. On
the other hand, the tool used in the cleaning of plants can transmit the contagious;
therefore in a natural way the spread should be within rows and perhaps on a lesser
degree among adjacent rows due to the physical separation between them. Once the
fungus is present, it is difficult to eradicate it; therefore, the effect of the chemicals
should be manifested mainly in a delay of the severity of leaf damage. In practice the
damage is measured from 1 (healthy leaf), 2 (medium level of infection) and 3 (severe
infection). Other important piece of information will be to predict the percentage
of the damage of a field, mainly the percentage of plants in level 2 and 3 in order
to evaluate when the plants should be harvested in order to minimize economical
losses.

Field information was taken at different periods of time (total of 5, approximately
every two months) to verify the advance of the disease for all the treatments, Figure
1 shows four panels with images of the same experimental field at four different times
(labeled time 0 trough time 3), data on time 4 was reserved to compare predictions.
The data has been either modified or partially concealed to preserve the confiden-
tiality of the information. The field accommodates 28 rows of plants with a depth
space of approximately 100 plants in each row. Three sections were marked, the
top with 7 rows was assigned to treatment 1 (dose of 10 times a basic amount of
milligrams of fungicide per liter of water), the 14 middle rows were for treatment 2
(a half concentration of treatment 1) and the 7 rows at the bottom of the field were
controls with no applications of fungicides. Dark areas in Figure 1 (mainly at the
top and at the right) are sections with no plants, light gray areas represent healthy
plants, white represents plants with medium infection level and in dark gray we have
plants with severe damage.

Among the hypotheses of interest we have, first of all, the treatment comparisons,
followed by the contrast of the degree of spatio-temporal dependency versus a model
with only independent observations. In the spatial aspect, we would like to verify if
the contamination can be credited only to the dependence of rows or if other structure
of neighbors must be taken into account. Finally, the generation of a prediction of
damage in the field for the next period of time, to decide the appropriate harvesting
time of the plant even if it has not reached its level of optimal maturity.

Since we want to model fungus transmission, and the distance between plants among
rows and columns are different by design, the lattices will be non-regular, to this
effect we will include the effect of neighbor distance, defining different coefficients in
the model that capture the effect of dependencies by rows and by columns.

3



0
5

10
15

20
25 time 0

0
5

10
15

20
25 time 1

0
5

10
15

20
25 time 2

0 20 40 60 80 100

0
5

10
15

20
25 time 3

Figure 1: Spreading disease on agave plants

A factor that could be of interest is to determine the nature of spreading of the
disease, whether it is in the direction of rows or if there is contamination to adjacent
rows, this is of concern because weeding practices dictate cleaning by rows and this
can compound the contamination since weeders that are not properly cleaned can
carry the fungus from plant to plant; testing row and column effects will provide
some light on this issue.

Section 2 provides the necessary nomenclature and establish the model, in Subsection
2.1 we provide a method of estimation, testing procedure and selection model. Once
we select the proper model, in Section 3 we provide a way to generate predictive
maps for a future time and evaluate its fit. Relevant conclusions and further work
is discussed in Section 4.
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2 The Model

Let yijt be the random variable defined by the status of the plant at row i, column
j, and time t, (i = 1, · · · , I, j = 1, · · · , J, t = 0, 1, · · · , T ). We have plants on a
lattice I × J which has been under observation at times 0, 1, · · · , T . The observed
damage level in each plant is an ordinal response variable with levels 1, 2, · · · , S
where level 1 refers to healthy plants, and S is the highest degree of damage due to
infection. We will assume a proportional odds model for the responses; that is, if y
is the response of a given plant, and if γd(x) = P (y ≤ d |x), d = 1, · · · , S − 1, is the
cumulative probability of damage up to level d, then the proportional odds model
postulates that [see McCullagh (1980)]

logit[γd(x)] = θd − xT β, d = 1, · · · , S − 1

where x is a vector of covariables associated with the given plant, and the θ’s are the
so-called “cut-point” parameters for the damage levels (θ1 ≤ θ2 ≤ · · · θS−1). Thus,
the (conditional) probability distribution of y is given by

πd(x) ≡ P (y = d |x) =





γ1(x) d = 1
γd(x)− γd−1(x) d = 2, · · · , S − 1
1− γS−1(x) d = S

The covariables to be considered include average status of neighboring plants, time,
and treatment effects; that is, we are considering models for the conditional dis-
tribution of yijt given a set of values yi′j′t′ with indices on some neighborhood of
(i, j, t). This defines a Markovian random field over the ensemble time × location.
The concept of neighbor of a site s is related to those sites around the site, Besag
(1972) calls them “closest neighbors”, which for a lattice structure they are referred
as neighbors of first order and include only the adjoining four quadrants, two in the
same row and the other two in the adjoining rows; second order neighbors include
the four neighbors in the diagonal plus the neighbors of first order. For a given site
(i, j, t) we will use first order neighborhoods augmented by one “site” defined by
(i, j, t− 1).

The consistency of models specified by conditional distributions has been extensively
studied, see for example Arnold et al (1999); in our case the linear fashion in which
the parameters enter in the logit model, together with multinomial variation, imply
the stucture of a multivariate generalized model (see McCullagh (1980)) and thus
the proposed model is guaranteed to be consistent, that is, there exists an underlying
joint distribution with precisely the same conditionals as postulated in our model.

Now, for our particular problem on disease transmission, let x1 be the average of
damage levels of neighbors within the same row, x2 the corresponding average for
neighbors in adjacent rows, x3 the damage level of the plant one period of time
earlier, and let wk be an indicator variable for treatment k, (k = 1, · · · ,K); then,
the vector of covariables is
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xT = (x1, x2, x3, w1, · · · , wK)

Thus, the proportional odds model is

γd(xijt) = P (yijt ≤ d |xijt), d = 1, · · · , S − 1

with

logit[γd(xijt)] = θd − xT
ijtβ, θ1 ≤ θ2 ≤ · · · θS−1.

and

βT = (τ1, τ2, τ3, α
T )

is the (K + 3) × 1 vector of regression parameters. The implicit assumption of
proportional odds implies the somewhat restriction that regardless of the severity,
d, of the disease, the relative impact of the covariables on the response remains the
same.

Define the neighbors of yijt as

Nijt = { yi−1,jt , yi+1,jt , yi,j−1,t , yi,j+1,t , yij,t−1}

and for each time t = 1, 2, 3 split the data in two groups G1t and G2t so that if a
given observation for time t is in group Gut, then its time t neighbors belong to Gvt,
(u 6= v). Using this split we can write a conditional likelihood for each group. The
contribution of yijt to its corresponding conditional likelihood is obtained assuming
a multinomial model

S∏

d=1

π
δijtd

ijtd (xijt)

where δijtd = 1 if yijt = d and 0 otherwise; thus, the composite likelihood or pseu-
dolikelihood is

L = C
3∏

t=1

2∏

g=1

∏

(i,j,t)∈Ggt

S∏

d=1

π
δijtd

ijtd (xijt)

Properties of the pseudolikelihood estimator (PLE) have been studied in Lindsay
(1988), Arnold and Strauss (1991) and Heagerty and Lele (1998), among others;
in particular, large sample properties of PLE’s include consistency and asymptotic
normality.
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2.1 Data analysis

Straightforward maximization yields parameter estimates, of interest are those asso-
ciated with treatment effects, α1 and α2, since they are related to the odds of having
a healthy plant (level 1) for plants under treatment i, i = 1, 2, versus the correspond-
ing odds for control plants, these odds ratios are exp(−αi). For the agave data we
find α̂1 = −0.23 and α̂2 = −0.09, which potentially indicate that both treatments
have a positive effect in slowing the spread of the disease; however a comparison
against a reduced model with no treatment effects results in a p-value of 0.43 and
thus treatment effects do not show a significant difference compared with the control
plants.

A secondary interest is to test whether or not the disease is really affecting neigh-
boring plants. A pseudolikelihood ratio test to compare a full model with past and
spatial effects versus a reduced model without spatial terms shows a strong signifi-
cance, thus supporting that the disease really spreads to neighboring plants. Tests
for the significance of the individual spatial effects (row and column effects) show
that both are important; thus our working model is

logit[P (y ≤ 1)] = θ̂1 − τ̂1x1 − τ̂2x2 − τ̂3x3

logit[P (y ≤ 2)] = θ̂2 − τ̂1x1 − τ̂2x2 − τ̂3x3

with θ̂1 = 16.8, θ̂2 = 27.0, τ̂1 = 5.2, τ̂2 = 0.8, and τ̂3 = 6.9. From here, for example,
plants surrounded by healthy neighbors (x1 = 1 and x2 = 1, average states of row
and column neighbors respectively), will have an estimated probability distribution
given by

P (y = 1) =
e10.8−6.9x3

1 + e10.8−6.9x3

P (y = 2) =
e21.0−6.9x3

1 + e21.0−6.9x3
− e10.8−6.9x3

1 + e10.8−6.9x3

P (y = 3) =
1

1 + e21.0−6.9x3

where x3 is the state of the plant in the previous time. Since the covariables x1, x2

and x3 are on the same scale, its estimated coefficients measure their relative impact
on the response and thus x3, the state of a plant in the previous state, is, logically,
the covariable with the most impact in the future state of a plant.

Table 1 shows the estimated transition probabilities for three scenarios, in the first we
assume row neighboring plants with a medium level of infection (level 2) and compute
the distributions for level of damage conditional on the damage level present in the
previous time; from the table we see that a plant with a healthy past has a high
probability of 0.78 to reach a level 2 of infection, also, if a plant already was in level
2 it would have an estimated probability of .11 to worsen its state. In the second
scenario we show the estimated effect for the case of column neighbors in level 2
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whereas row neighbors are in level 1, for this case we see that the effect of column
neighbors is weaker than the effect of row neighbors which is consistent with the fact
that a row neighbor of a plant is closer than a column neighbor. Finally, in the third
scenario we have the case of plants surrounded by heavily infected plants (level 3),
in this extreme scenario it is very likely that a plant would increase its damage level
regardless of its previous state.

1 2 3 1 2 3 1 2 3
1 0.22 0.78 0.00 0.96 0.04 0.00 0.00 0.90 0.10
2 0.00 0.89 0.11 0.02 0.97 0.00 0.00 0.01 0.99
3 0.00 0.01 0.99 0.00 0.42 0.58 0.00 0.00 1.00

x1 = 2, x2 = 1 x1 = 1, x2 = 2 x1 = 3, x2 = 3
Scenario 1 Scenario 2 Scenario 3

Table 1: Transition Probabilities

3 Prediction

Plants with an advanced degree of infection are not suitable for harvesting, thus it
is important to have a tool for the prediction of the degree of infection that will
be present in a future time. Prediction for random fields requires the knowledge
of the state of neighboring units, which clearly are not available, thus we adopt
an iterative procedure in which we initially assume as proxies for future levels the
current observations. A procedure for predicting future realization of the states of
the random field is as follows:

• Step 1: Assume current neighbors will remain without change on their sta-
tus. Predict status for each plant, based on the estimated model. Choose as
predictor, the category with the maximum estimated probability.

• Step 2: Update status of neighbors using predictions from Step 1 and do a new
prediction exercise.

For the agave data set we estimated the model based on times 1 through 3, we have
available observations on disease levels for time 4, so that we can compare the per-
formance of the prediction algorithm. Table 2 shows a crosstabulation of predicted
versus observed disease levels for time 4. The diagonal of the table has frequencies
of classification successes; similarly, off-diagonal values are misclassifications; the
procedure had a total of 132 errors out of 2066 trials, or a 6.4% prediction error rate.
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Observed
1 2 3

Predicted 1 1328 83 0 1411
2 28 593 10 631
3 0 11 13 24

1356 687 23 2066

Table 2: Prediction at time 4.

4 Conclusions

Crops with long times to maturity that suffer damages represent an economical risk
not only for the loss of the crop itself but also for the lost time and incurred main-
tenance costs; thus it is important to have predictive models that can monitor the
spread of a particular disease. In this work we presented a model for the probability
distribution of the levels of an infectious disease in agave plants. This model incorpo-
rates spatial and temporal effects and can easily accommodate other covariables such
as treatment effects. In particular, the core of the model is the proportional odds
model conditional to the states of neighboring plants. This model proposal defines
a Markov random field and for estimation purposes we opted for a pseudolikelihood
approach.

The model lends itself to testing of nested submodels to answer the pertinent ques-
tions posed by the researcher. In particular, for the agave data set, we found that the
treatments had no significative difference with respect with control plants; however
the spatial dependence was found to be highly significant.

Pseudolikelihood approaches are particularly useful for spatio-temporal problems
but more research is needed to evaluate the loss of efficiency with respect to full
likelihood approaches.
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Peterson, B. and Harrel, F. E. (1990). Partial proportional odds models for ordinal
responses variables. Applied Statistics. 39, 2, 205–217.

Wu, H. and Huffer, F. W. (1997). Modeling the distribution plant species using
the autologistic regression model. Envirnonmental and Ecolocical Statistics. 4, 2,
49-64.

11


